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Abstract
The high-order behaviour of the perturbation expansion in the cubic replica field
theory of spin glasses in the paramagnetic phase has been investigated. The
study starts with the zero-dimensional version of the replica field theory and
this is shown to be equivalent to the problem of finding finite-size corrections
in a modified spherical spin glass near the critical temperature. We find that the
high-order behaviour of the perturbation series is described, to leading order,
by coefficients of alternating signs (suggesting that the cubic field theory is
well defined) but that there are also subdominant terms with a complicated
dependence of their sign on the order. Our results are then extended to the
d-dimensional field theory and in particular used to determine the high-order
behaviour of the terms in the expansion of the critical exponents in a power
series in ε = 6 − d. We have also corrected errors in the existing ε expansions
at third order.

PACS numbers: 75.10.Nr, 75.50.Lk, 64.60.Cn

1. Introduction

The theory of spin glasses in finite-dimensional systems has traditionally been approached
by the loop expansion around Parisi’s mean-field replica symmetry breaking solution [1].
However, the picture of spin glasses which emerges from this perturbative approach is
quite different to that arising in droplet theory [2]. The motivation for this paper was to
investigate the possibility that perturbation theory in spin glasses might fail for some reason
(for example, non-perturbative terms like ‘droplets’ might dominate their free energy, at least
in the low-temperature phase). We have started the programme with a study of the nature of
the perturbation expansion in the high-temperature or paramagnetic phase, and postpone to
another paper the discussion of the low-temperature phase.

In general the nature of perturbation expansions in disordered systems is far from trivial.
This is in contrast to the perturbation theory in pure systems, where, for example, the Borel
summability of the series leads to an accurate evaluation of critical exponents [3]. In the
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study of the perturbation expansion for disordered ferromagnets, Bray et al [4] found that even
in zero dimensions, the high-order behaviour of the perturbation expansion was surprisingly
rich. The high-order expansion coefficients are sums of two kinds of terms: one type has an
unusual cosine-like oscillation with increasing periodicity and the second type has a simple
alternation in sign which dominates for small disorder. This unusual behaviour has been
further studied in [5, 6], with the final conclusion that the series is still summable, but that the
simple Borel procedure needs to be modified to deal successfully with long series. We shall
find that the perturbation expansion for spin glasses has remarkably similar features to those
of the disordered ferromagnet.

Our investigation of the nature of the perturbation expansions in the high-temperature
phase of spin glasses starts by looking at the perturbation expansion of the zero-dimensional
spin glass problem (which will be referred to as the ‘toy’ problem). The zero-dimensional
field theory is the key to the analysis of the d-dimensional field theory as the extension to the
d-dimensional field theory and critical exponents is a relatively straightforward extension of
the toy problem [7]. Apart from being simple integrals, the zero-dimensional toy field theory
has the advantage of allowing an analysis without replicas. In this paper this is achieved by
mapping the problem to that of critical finite-size scaling in a modified version of the spherical
spin glass [8] and this mapping allowed us to find the high-order behaviour without the use
of replicas. However, to obtain the high-order behaviour of the perturbation expansion for
the d-dimensional field theory requires the use of replicas and we found that this needed the
use of a non-trivial replica symmetry breaking scheme in the toy model in order to get results
consistent with our mapping to the spherical model. Our chief result is that the perturbation
theory is well defined and the dominant high-order terms in the perturbation expansion have
coefficients of alternating signs. However, the perturbation series of the zero-dimensional
spin glass field theory is not Borel summable in a straightforward way due to the presence of
subdominant terms.

The paper is organized as follows. In the next section, we consider the cubic replica
field theory of spin glasses and obtain the first few expansion coefficients of the zero-
dimensional toy problem by explicitly evaluating the Feynman diagrams. In section 3, we
show the equivalence of the zero-dimensional field theory and the critical finite-size scaling of
the modified spherical model. Using this mapping we obtain the high-order behaviour of the
perturbation expansion for the toy problem in section 4. In section 5, we consider the toy
problem using replicas. This is generalized to the problem of the high-order terms in the ε

expansion in section 6. We conclude with a discussion in section 7. In order to appreciate the
technical background to our calculations we would recommend that the reader first consult
the papers of McKane [5, 7].

2. Replica field theory of spin glasses

The replica field theory of spin glasses (see [9] for a review), starts from the Hamiltonian
density

H = 1

4

∑
α,β

(∇qαβ)2 +
τ

4

∑
α,β

q2
αβ − w

6

∑
α,β,γ

qαβqβγ qγα

− y

 1

12

∑
α,β

q4
αβ +

1

8

∑
α,β,γ,δ

qαβqβγ qγ δqδα − 1

4

∑
α,β,γ

q2
αβq2

αγ

 . (1)

As usual the field components qαβ (α �= β and qαβ = qβα) take all real values, and the indices
such as α take the values 1, 2, 3, . . . , n. In the limit when n goes to zero, such a field theory
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is thought to capture the physics of finite-dimensional spin glasses. The quartic terms work
as stabilizing terms, but for d < 6 are irrelevant variables which we shall drop. One question
which we shall ask is whether the resulting cubic field theory is well defined in the limit
n → 0. It is possible this approach may not be valid as cubic theories have Hamiltonians
which are not bounded below [7]. However, there are examples of field theories existing where
unphysical limits, such as the number of field components n is taken to zero, which saves these
apparently unphysical theories [7, 10]. This seems also to be the case for spin glasses as
our work shows that the coefficients in the perturbation expansion in w alternate in sign,
which is an indication that the field theory remains well defined in the limit when n goes to
zero.

The partition function of the zero-dimensional spin glass field theory is given by

Z =
∫ ∏

α<β

(
dqαβ√

2π

)
exp

−τ

4

∑
α,β

q2
αβ +

w

6

∑
α,β,γ

qαβqβγ qγα

 . (2)

The perturbation expansion is well defined irrespective of whether the integral of equation (2)
actually exists. The perturbation expansion in w yields a series

Z(g2) = τ− n(n−1)

4

[
1 +

∞∑
K=1

AKg2K

]
, (3)

where we take g2 = w2/(τ/2)3 as the expansion parameter of the problem. The use of τ/2
instead of τ is for later convenience. The series expansion of the corresponding free energy is
given by

βF(g2) = n(n − 1)

4
ln τ −

∞∑
K=1

BKg2K. (4)

Although this zero-dimensional theory is nothing but a multiple integral, it is not an easy
task to calculate the expansion coefficients AK or BK directly by expanding the exponential
in (2), because of the complicated structure of the internal summations. In fact, even using a
symbolic manipulation program on a computer, we find it very difficult to get the expansion
coefficients higher order than the first couple of terms. Fortunately, in the study of a cubic
field theory similar to ours—the percolation problem [11]—different types of the internal
contractions occurring in the theory were classified diagrammatically, and all the relevant
diagrams were given up to O(g8). To this order there are five different internal contraction
types. (See the diagrams denoted by α, β, γ, δ and λ in figures 1 and 2.) These were translated
into the spin glass problem in [12]. In figures 1 and 2, all the diagrams to this order contributing
to the renormalized propagator and vertex are listed along with their contributions. Note that,
in the zero-dimensional field theory, each contribution is just given by the product of these
contraction factors.

The expansion coefficient BK of the free energy can be obtained by noting that
−∂(βF )/∂w is just the renormalized three-point function, which can be written in terms
of the renormalized propagator and vertex. Collecting the contribution from each diagram
and using the results of the internal contractions, we calculate the perturbation expansion
coefficient BK up to four-loop order (0(g8)). We find that BK = 1

6n(n − 1)(n − 2)fK/8K ,
where f1 = 1/2, f2 = n−2, f3 = 4n2 −31n/2 + 44/3 and f4 = 22n3 −123n2 + 229n−148.
Therefore, the free energy for the toy spin glass problem, limn→0 F/n, is given by a power
series in g2 with coefficients of alternating signs up to O(g8).
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Figure 1. Feynman diagrams to O(g8) contributing to the renormalized propagator with their
corresponding contributions.

Figure 2. Feynman diagrams to O(g8) contributing to the renormalized vertex with their
corresponding contributions.

In the course of investigation, we have discovered errors in two (δ and λ in figures 1 and 2)
of the five types of contraction reported in [12]. The correct results we obtain are δ = n3 −
9n2 + 54n−104 and λ = 5n2−14n, while the results in [12] were δ = n3−3n2 + 38n−94 and
λ = 5n2 − 2n − 12. The latter can easily be shown to be incompatible with the simple n = 3
case. These corrections will change the O(ε3) terms in the critical exponents in d = 6 − ε

dimensions. From the explicit expressions for the critical exponents η and ν obtained in [11],
we calculate the correct form of the ε expansion to third order to be

η = −0.3333ε + 1.2593ε2 + 0.7637ε3 (5)

ν−1 − 2 + η = −2ε + 9.2778ε2 − 6.4044ε3. (6)

The corrected series for ν−1 − 2 + η shows an oscillation in signs in contrast to that in [12]
where the O(ε3) term was positive.
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3. Mapping of the toy problem onto a modified spherical model

As mentioned in the introduction, we study the zero-dimensional field theory by mapping it
onto a modified version of the spherical spin glass model. The Hamiltonian of the spherical
model is

Hsp = −1

2

∑
i,j

Jij SiSj , (7)

with the spherical constraint
∑

i S
2
i = N among the N spins. Unlike the conventional spherical

spin glass model [8], we take Jii �= 0 in addition to the infinite-ranged interactions Jij = Jji

(i �= j). They are chosen from Gaussian distributions

P(Jij ) ∼ e− N
4 trJ2 =

∏
i

e− N
4 J 2

ii

∏
i<j

e− N
2 J 2

ij . (8)

The presence of the diagonal interaction does not make any difference in the N → ∞ limit.
In the following, however, we consider finite-size corrections in this model. The partition
function can be written as

Zsp = β

2

∫ ∞

−∞

∏
i

dSi

∫ i∞

−i∞

dz

2π i
exp

β

2

Nz − z
∑

i

S2
i +

∑
i,j

Jij SiSj

 , (9)

where β = 1/T is the inverse temperature and the chemical potential z was introduced to
represent the delta function δ

(
N − ∑

i S
2
i

)
.

In order to make a connection to the replica field theory (2), we replicate the partition
function n times and average over the Gaussian bond distribution. We then take the usual
Hubbard–Stratonovich (HS) transformations on the factor exp

[
(β2/4N)

∑
α,γ

(∑
i S

α
i S

γ

i

)2]
to get the spins on the same site, where the Greek indices denote the replica components. In
order to do that, we need to introduce the diagonal qαα and off-diagonal qαγ (α �= γ ) fields for
the corresponding factors. We have

exp

 β2

4N

∑
α

(∑
i

(
Sα

i

)2

)2
 =

∫ ∏
α

(
N

4πβ2

) 1
2

dqαα

× exp

[
− N

4β2

∑
α

q2
αα +

1

2

∑
α

qαα

∑
i

(
Sα

i

)2

]
, (10)

and

exp

 β2

2N

∑
α<γ

(∑
i

Sα
i S

γ

i

)2
 =

∫ ∏
α<γ

(
N

2πβ2

) 1
2

dqαγ

× exp

[
− N

2β2

∑
α<γ

q2
αγ +

∑
α<γ

qαγ

∑
i

Sα
i S

γ

i

]
. (11)

We can then integrate over the spin variables to obtain the replicated partition function as
integrals over the HS fields, qαα and qαγ and over the replicated chemical potential zα:
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Zn =
∫ ∏

α

(
N

4πβ2

) 1
2

dqαα

∫ ∏
α<γ

(
N

2πβ2

) 1
2

dqαγ

×
∫ i∞

−i∞

∏
α

β
dzα

4π i
exp

[
− N

4β2

∑
α

q2
αα − N

2β2

∑
α<γ

q2
αγ

+
N

2

(∑
α

βzα − tr ln[(βzα − qαα)δαγ − qαγ ]

)]
, (12)

where tr is taken with respect to the replica index.
In the large-N limit, these integrals can be evaluated by the steepest descent method. For

T > Tc ≡ 1, the saddle points are at qαγ = 0, qαα = β2 and zα = β + β−1. This is the
well-known result [8] from the N → ∞ analysis of the spherical spin glass. We investigate
the finite-size corrections in the limit T → Tc = 1 by considering the fluctuations around
these saddles. Writing qαα = β2 + yα and βzα = 1 + β2 + ixα , we have

Zn
sp = C

∫ ∏
α<γ

(
N

2πβ2

) 1
2

dqαγ

∫ ∏
α

(
N

4πβ2

) 1
2

dyα

×
∫ ∞

−∞

∏
α

dxα

4π
exp

[
− N

4β2

(∑
α,γ

q2
αγ +

∑
α

y2
α

)

− N

2

∑
α

(yα − ixα) − N

2
tr ln[{1 − (yα − ixα)}δαγ − qαγ ]

]
, (13)

where C = exp((nN/2)(1 + β2/2)). If we expand the logarithm in powers of the fields, we
find that the quadratic terms in the diagonal fields xα and yα inside the exponential are given
by

−N

4

∑
α

[
(T 2 − 1)y2

α + 2ixαyα + x2
α

]
. (14)

Diagonalizing this quadratic form, we find two eigenvalues with nonvanishing negative real
parts at T = Tc, which implies that the diagonal fields are hard modes near Tc and can
be integrated away without encountering divergences. Therefore, the critical behaviour is
described by the off-diagonal partition function, which can be written as

Zoff =
∫ ∏

α<γ

(
N

2πβ2

) 1
2

dqαγ exp

[
−N

4
(T 2 − 1)

∑
α,γ

q2
αγ +

N

6

∑
α,β,γ

qαβqβγ qγα + O(q4)

]
,

(15)

where the quartic and higher order terms in qαγ all have coefficients proportional to N. A
key point of this discussion is to note that, in the limit where t ≡ (T − Tc)/Tc → 0 and
N → ∞, the quartic and higher order terms can be neglected if we keep Nt3 finite. This
can be easily seen by rescaling qαγ → qαγ /

√
Nt in (15). In fact we can show that the off-

diagonal partition function in this limit is exactly the same as the zero-dimensional cubic field
theory defined in (2) and (3) after identifying the expansion parameter as g2 = 1/(Nt3) and
τ = T 2 − 1 = t (2 + t) → 2t as t → 0. We have Zoff(N, β) → Z

(
1

Nt3

)
as N → ∞, t → 0

and Nt3 → finite. A similar observation was made for the critical finite-size corrections of
the Sherrington–Kirkpatrick model in [13]. (In this paper, the series for the free energy of the
toy model was given to order g4).
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Figure 3. The integration contour Csp used in equation (16). The filled circles represent the
eigenvalues Jλ schematically. The largest and the second largest eigenvalues are denoted by J1
and J2, respectively.

4. High-order behaviour of the expansion coefficients: toy problem

4.1. Leading-order behaviour

Having established the equivalence of the modified spherical spin glass model to the cubic
replica field theory, we can analyse the toy problem (2) without using the replicas. Integrating
over the spin variables in (9), we obtain

Zsp = β

∫ i∞

−i∞

dz

4π i
exp

[
Nβz

2
− 1

2

∑
λ

ln

(
βz

2
− βJλ

2

)]
, (16)

where Jλ denotes the eigenvalue of the matrix Jij . Note that the contour Csp of integration
lies to the right of the largest eigenvalue J1. (See figure 3.)

For large N, the integral is dominated by the saddle point determined by

β = 1

N

∑
λ

1

z − Jλ

. (17)

In the limit N → ∞, one can evaluate the sum on the right-hand side using the Wigner
semicircle law for the eigenvalue density ρ(Jλ) [8]. Here we are interested in the finite N
corrections, in particular, the limit where N → ∞ and t → 0 with Nt3 held fixed. In this
case, one has to find a solution z of (17) for given bond realization Jij , then calculate the free
energy −T ln Zsp from (16), which has to be averaged over the bonds. This is an extremely
difficult task to carry out analytically. Instead here we make a self-consistent approximation
where we assume the saddle point is located well away (in the sense to be specified below)
from the largest eigenvalue J1. Since the eigenvalues can be regarded as one-dimensional
electric charges interacting logarithmically [14, 15], an analogy to the multipole expansion in
electrostatics suggests that we can treat the eigenvalues less than J1 as a continuous distribution
given by the semicircle law. That is to take

ρ(Jλ) � 2(N − 1)

πJ 2
1

√
J 2

1 − J 2
λ + δ(Jλ − J1). (18)
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(a)

(b)

Figure 4. (a) The disorder distribution responsible for the dominant high-order behaviour. The
largest eigenvalue J1 is far away from the saddle point that the contour passes through. The rest of
the eigenvalues (the shaded region) are approximated as a continuum distribution. (b) The disorder
distribution for the sub-dominant high-order behaviour. The separation  between the eigenvalues
J1 and J2 is large so that the eigenvalues smaller than J2 can be approximated as a continuum.

In the limit of N → ∞, t = (β−1 − J1/2)(2/J1) → 0 (Tc = J1/2) and finite η ≡ N1/3t ,
we find that the distance of the saddle point from J1 is scaled as z − J1 ∼ O(N−2/3). In
terms of ζ ≡ N2/3(z − J1)(2/J1), the saddle point equation (17) reduces to η = √

ζ − 1/ζ

in this approximation. As will be shown below, the high-order behaviour of the perturbation
expansion is described by the small g2 (or large η) behaviour of the partition function. The
distance of the saddle point from the largest eigenvalue (measured in terms of ζ ) will be large
for large η and therefore the approximation can be justified for determining the high-order
coefficients of the perturbation expansion. (See figure 4 (a).)

Within this approximation, the sum in (16) consists of the term involving J1 and

1

N − 1

∑
λ

′
ln(z − Jλ) � z

J 2
1

(
z −

√
z2 − J 2

1

)
+ ln

[
1

2

(
z +

√
z2 − J 2

1

)] − 1

2
, (19)

where the prime indicates the largest eigenvalue is excluded from the sum. By changing the
integration variable to ζ in (16) and taking the large-N limit, we obtain

Zsp � β e−Nβf0

N
1
3

e
η3

6

∫ i∞

−i∞

dζ

4π i

exp
(− 1

2ηζ + 1
3ζ

3
2
)

√
ζ

= βN− 1
3 e−Nβf0 e

η3

6

∫
C

dξ

2π i
e

ξ3

3 − ηξ2

2 , (20)

where βf0 = −βJ1/2 + (1/2) ln(βJ1/4) + 1/4 + t3/6 and the contour C starts from |ξ | = ∞
with arg(ξ) = −π/4 and extends to |ξ | = ∞ with arg(ξ) = π/4. We can evaluate the above
integral explicitly as

Zsp � βN− 1
3 e−Nβf0 e

η3

12 Ai

(
η2

4

)
, (21)

where Ai is the Airy function. We note that the above expression is valid for both T > Tc

(η > 0) and T < Tc (η < 0). Since the argument of the Airy function is an even function of
η, we obtain, in the large-N limit, Ai(η2/4) ∼ exp[−|η|3/12]/

√
2π |η| using the asymptotic
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(a)

(b)

Figure 5. The rotated contours used in equation (23) for (a) arg(g2) = π and (b) arg(g2) = −π .
The insets show how these contours must be deformed to pass through the saddle points u = 0 and
u = 1 (filled circles).

behaviour of the Airy function. Therefore, above Tc, the leading contribution to the free
energy density, −N−1 ln Zsp, in the large-N limit is just βf0. On the other hand, below Tc, it
is given by βf0 − t3/6. One can explicitly check that these quantities coincide with the free
energy densities given in [8] for the spherical model when T approaches Tc from above and
below.

We now consider the finite-size corrections above Tc. To do this we introduce Z1 by
writing (20) as

Zsp = β e−Nβf0

√
2πNt

Z1. (22)

Note that the square root in the denominator of (22) comes from the Gaussian fluctuations
around the large-N saddle point. The finite-size corrections relevant to the zero-dimensional
cubic field theory comes from Z1, since we can show that Z1 = Z1(g

2) is a function of the
expansion parameter g2 = η−3 only. It is given by

Z1(g
2) =

√
2π

g2

∫
C

du

2π i
exp

[
1

g2

(
u3

3
− u2

2
+

1

6

)]
, (23)

where u = g2/3ξ . Although Z1(g
2) can be evaluated analytically as in (21), we calculate the

high-order expansion coefficients of Z1 by an indirect method, where the self-consistency of
our approximation is more apparent. (Remember that we are striving to get the behaviour of
the high-order coefficients exactly; our approximation of the distribution of the eigenvalues as
a continuum described by the semicircle law does not give the correct low-order coefficients
in the expansion of the free energy). From the integral representation (23), we can analytically
continue Z1(g

2) to any complex g2 by rotating the contour appropriately. We find that Z1 has
a branch cut along the g2 < 0 axis. The imaginary part of Z1 is discontinuous crossing this
axis. For small |g|2, we can evaluate the discontinuity by the steepest descent method. For
arg(g2) = ±π , the contour C is rotated by ±π/3 as shown in figure 5. Among the two saddle
points u = 0 and u = 1 that C can pass through, the latter produces a real quantity which is
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Figure 6. The integration contour in the g2 space used to determine the expansion coefficients aK

in equation (25). The integral reduces to the one along the branch cut on the g2 < 0 axis as the
contribution from the circle vanishes when the radius gets large.

the same for arg(g2) = ±π , while the former is responsible for the discontinuous imaginary
part

Im Z1(g
2; arg(g2) = ±π) = ∓1

2
exp

(
1

6g2

)
[1 + O(g2)]. (24)

This can be used to extract the coefficients AK of the perturbation expansion. We follow the
standard procedure [16, 17] by writing a dispersion relation for Z1(g

2) for g2 > 0 in terms
of an integral over a contour that runs around the cut in the negative g2 axis. (See figure 6.)
Therefore, the coefficients aK ≡ limn→0 AK/n of the perturbation expansion in the toy spin
glass field theory is given by

aK � 1

π

∫ 0

−∞
dg2 Im Z1(g

2; arg(g2) = π)

(g2)K+1
. (25)

For large K, this integral is dominated by the saddle point g2 = −1/(6K). This implies that
the information on Im Z1(g

2) for small g2 can be used to obtain AK for large K, which justifies
the present approximation. We finally obtain

aK � 1

2π
(−6)KK!K−1

[
1 + O

(
1

K

)]
. (26)

The coefficients with alternating signs are consistent with the low-order behaviour obtained
in section 2.

4.2. Subdominant behaviour

There can be other contributions to the free energy from different disorder distributions. For
example, when the eigenvalues are distributed in such a way that the saddle point is not very far
from the largest eigenvalue, the above approximation breaks down. In this case, we expect a
different behaviour of the free energy. To handle this, we again make an approximation which
can be justified self-consistently. We consider a disorder distribution where the second largest
eigenvalue J2 is well separated from J1 such that the spectrum below J2 can be described by
the semicircle law. (See figure 4(b).) This assumption is justified in the following analysis.
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We approximate

ρ(Jλ) � 2(N − 2)

πJ 2
2

√
J 2

2 − J 2
λ +

∑
i=1,2

δ(Jλ − Ji). (27)

and

Zsp � β

∫ i∞

−i∞

dz

4π i

exp
[

Nβz

2 − N
2 ln

(
β

2

) − 1
2

∑′′
λ ln(z − Jλ)

]
√

z − J1
√

z − J2
, (28)

where the double-primed sum excludes λ = 1 and 2. This sum can be evaluated as in (19)
with J2 replacing J1. We make the same series of integration variable changes leading to (20)
and (23) (using ζ ≡ N2/3(z − J2)(2/J2) and Tc = J2/2 in this case), and take the large-N
limit. We obtain Zsp � β e−Nβf0Z2 where f0 is the same as before with J1 replaced by J2 and

Z2(g
2,) =

∫
C

du

2π i

exp
[

1
g2

(
u3

3 − u2

2 + 1
6

)]√
u2 − g

4
3 

, (29)

with the eigenvalue spacing  ≡ N2/3(J1 − J2)(2/J2). (Recall g−2 = η3.)
The contribution from this arrangement of disorder to the free energy, which we denote

by Fsub, is obtained by averageing −ln Z2 over the distribution p() of the eigenvalue spacing
. Among the subdominant contributions to the high-order behaviour, we focus on those
from possible zeros of Z2. By explicitly evaluating the contour integral (29) numerically
for given g, we find that there exists a complex conjugate pair of zeros, 0 and ∗

0 in the
complex- plane. To make analytic progress on the contribution from these zeros, we look
at the fluctuation around the saddle point u = 1. By writing u = 1 + igy and neglecting O(g)

terms, we obtain Z2 � (
√

g/2)Z̃2(g
2,), where

Z̃2(g
2,) = Z̃2(v) =

∫ ∞

−∞

dy

2π

e−y2/2

√
v + iy

(30)

with v = (1−g4/3)/(2g). Note that v is assumed to be of O(1), which means  ∼ O(g−4/3).
This is consistent with the present approximation where the separation of eigenvalues  is
very large. Writing

1√
v + iy

=
∫ ∞

−∞

ds√
2π

e−s2(v+iy)

and integrating over y in (30), we have

Z̃2 =
∫ ∞

−∞

ds

2π
e−vs2−s4/2 =

√
v

2

ev2/4

2π
K 1

4

(
v2

4

)
. (31)

The zeros of Z̃2 come from the infinitely many zeros of the modified Bessel function K 1
4

[5, 6]. We can arrange them as complex conjugate pairs, vm and v∗
m,m = 0, 1, 2, . . . , given

approximately for large m by

v2
m ∼ e3π i/2[−i ln 2 + (4m + 3)π ] (32)

and for m = 0 exactly (up to four decimal places) by v2
0 = 9.4244 − 0.6928i. Among the

infinitely many zeros, we focus only on the pair v0 and v∗
0 closest to the origin as our numerical

evaluation of zeros of (29) is consistent with 0 = (1 − 2gv0)/g
4/3 for small g. The other

zeros probably give only subdominant contributions compared to the first ones.
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Figure 7. The deformed contour in g2 space that leads to equation (35). The branch points g2
0 and

g∗2
0 correspond to the zeros of the logarithm.

The subdominant contribution to the expansion coefficient denoted by ãK can be
calculated as

ãK = 1

2π i

∮
dg2

(g2)K+1
Fsub, (33)

where the integral is over a closed contour surrounding the origin. By interchanging the order
of integration, we can write

ãK = − 1

2π i

∫ ∞

0
dp()

∮
dg2

(g2)K+1
ln Z̃2(v). (34)

The integral over g2 is done by deforming the contour such that it runs along a circle of radius
R and around the branch cuts associated with the zeros, g2

0 and g∗2
0 of Z̃2 for fixed . (See

figure 7.) The integral along the circle vanishes as R → ∞ and we have

ãK =
∫ ∞

0
dp()

[∫ ∞

g2
0

dg2

(g2)K+1
+
∫ ∞

g∗2
0

dg2

(g2)K+1

]

= 1

K

∫ ∞

0
dp()

[
1(

g2
0

)K +
1(

g∗2
0

)K
]

. (35)

The eigenvalue spacing distribution is known [15] to take the form p() ∼ exp(−(π2/

16)(/D)2)) for large  when the mean eigenvalue spacing is D. From the numerical results
in [18] on the eigenvalue spacing distribution of real symmetric matrices, we can calculate the
mean spacing near the edge of the spectrum as D � 2.30. The integral over  in (35) can be
done using the steepest descent method for large K. The saddle point for the first term in (35)
is given by

− π2

8D2
 − 2K

g0

(
dg0

d

)
= 0, (36)

where dg0/d can be obtained from the defining equation

1 − g
4
3
0  = 2g0v0. (37)
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We can solve (36) and (37) for large K to obtain the saddle point values

gsad
0 = α

3
8 K− 3

8

[
1 −

(
5v0

4α
5
8

)
K− 3

8 + O
(
K− 3

4
)]

,

sad = α− 1
2 K

1
2

[
1 − 2

(
1 − 5

6α

)
v0α

3
8 K− 3

8 + O
(
K− 3

4
)]

,

where α = π2/(12D2) � 0.155. Note that the large-K behaviour corresponds to small g

and large  with  ∼ g−4/3, which means that these results are entirely in the regime of the
present approximation. Inserting these into (35) we finally obtain

ãK ∼ (K!)
3
4 aK exp

[−bK
5
8 + O

(
K

1
4
)]

cos
(
cK

5
8 + O

(
K

1
4
))

, (38)

where a = α−3/4 � 4.05, b = −3α3/8 Re(v0) � 3.15 and c = 3α3/8 Im(v0) � 3.38.
Compared with (26), this is a subdominant contribution containing only a fractional power of
K!. The coefficients do not alternate in sign as in (26) but oscillate with a cosine function with
an increasing periodicity. The situation is similar to that in the zero-dimensional disordered
ferromagnets [4–6], where this type of oscillation also occurs in the subdominant terms.
We expect that as in the case of disordered ferromagnets the subdominant terms make the
resummation of the series non-trivial such that a straightforward Borel summation is spoiled.
However, it seems likely that the series could be resumed in other ways and anyway, the
evidence from [4] suggests that the straightforward Padé–Borel method works well for short
series even in the presence of subdominant terms.

There are obviously other types of bond distribution which could give rise to subdominant
contributions to the high-order behaviour of the perturbation series besides that studied in this
subsection. We suspect that the type studied here provides the largest of these contributions
but we have no proof of this.

5. Replica approach to high-order behaviour in the toy problem

While the mapping of the toy integral, equation (2), to the spherical model has enabled us
to obtain direct estimates for the high-order terms of its perturbative expansion, in order to
obtain high-order estimates for the d-dimensional field theory and hence for critical exponents
we have to discover how to obtain the same high-order estimates directly from the integral in
the replica variables qαβ . Once this has been done the extension to field theory is relatively
straightforward and is carried out in the next section. Unfortunately the direct replica approach
is neither obvious nor rigorous. Without the results obtained from the mapping to the spherical
model we would have had no confidence in the replica procedure which we were forced
to use.

It is useful to first examine the integral for the special case of n = 3 when the integrals
can be done explicitly and exist if w is pure imaginary. This case was analysed in [7]. Here we
follow the same analysis to clarify some points which will be important in the case of general
n. For n = 3, we have after setting τ = 1 for simplicity

Z3(w) = 4π

(2π)3/2

∫ ∞

0
dR R2 e− R2

2 f (wR3), (39)

where

f (wR3) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ ewR3 sin2 θ cos θ cos φ sin φ

= π

3
I 1

6

(
wR3

6
√

3

)
I− 1

6

(
wR3

6
√

3

)
(40)
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with the modified Bessel function Iν(x). For pure imaginary coupling w = iw′, w′ real,
f = (π/3)J1/6(w

′R3/6
√

3)J−1/6(w
′R3/6

√
3) with the ordinary Bessel function Jν(x). We

can easily see that the integral in (39) is well defined and real in this case.
When analytically continued to real coupling w,Z3 develops an imaginary part which is

discontinuous crossing the branch cut along the real w axis. For small values of coupling,
one can calculate the discontinuity using the steepest descent method on the integral in (39).
Since the main contribution to the imaginary part comes from the saddle point R ∼ O(1/w),
we first study the asymptotic behaviour of f when |wR3| is very large, which is

f (wR3) ∼
√

3

wR3

[
exp

(
wR3

3
√

3

)
− exp

(
−wR3

3
√

3

)
+

√
3i

]
. (41)

The above expansion is valid for 0 � arg(w) � π , or for 0 � arg(w2) � 2π . For arg(w) = 0,
only the first exponential in (41) is important and the integral in (39) is dominated by the
saddle points R1 = 0 and R2 = √

3/w. The steepest descent direction at R2 is perpendicular
to the real-R axis along which the integral generates the imaginary part. We can deform the
contour in (39) such that it starts from R1 along the positive real-R axis toward R2 and makes
an upward turn at R2. (Examples of similar deformations are in [19].) We note that, since we
only pass a half of the steepest descent path of R2 in this way, the Gaussian integral coming
from the fluctuation around R2 produces a half of the total fluctuation contribution. Keeping
this in mind, we evaluate the integral to obtain Im Z3(w) = exp

(− 1
2w2

)
for arg(w) = 0. For

arg(w) = π , the saddle points are R′
1 = 0 and R′

2 = −√
3/w and the continuation of the

contour used for arg(w) = 0 to this case is that which makes the downward turn at R′
2. We

finally obtain the discontinuity in the imaginary part along the branch cut on the real-w axis as

Im Z3(w) = ± exp

(
− 1

2w2

)
, (42)

where the positive and negative signs correspond to arg(w2) = 0 and arg(w2) = 2π ,
respectively. This exponentially small imaginary contribution to the partition function at
the physical coupling can be used to determine the large order behaviour of the perturbation
expansion, but at the same time its presence indicates that the cubic field theory for n = 3 is
ill-defined and requires stabilizing quartic terms for its existence.

We now study the case of general n. For small values of the expansion parameter,
w2/(τ/2)3, we can evaluate the integrals in equation (2) using the steepest descent method.
Saddle points are found by solving

−τqαβ + w
∑

γ

qαγ qγβ = 0. (43)

The trivial solution of this equation qαβ = 0 is the starting point of the perturbative expansion.
Non-perturbative terms arise from its non-trivial solution. The set of saddles which we study
are qαβ = q, when both α and β lie in the interval between 1 and r, where and q = τ/(r −2)w.
This can be described schematically as

qαβ =

 q 0

0 0

 .

︸ ︷︷ ︸
r

︸︷︷︸
n−r

(44)
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Clearly other types of saddle exist besides this. We first focus on this class of saddles, which
we call scheme I. The Hamiltonian density for this saddle is given by

Hs = r(r − 1)τ 3

12(r − 2)2w2
. (45)

There are more solutions to equation (43) with the same Hamiltonian (45), which can be
obtained by switching the signs of some of qαβ . One can take, for example, q1β = −q for
β �= 1, and qαβ = q for α, β �= 1. Since one can pick any other subscript than 1, the
number of such solutions is r. One can also switch the signs of two different sets such as
q1γ = q2γ = −q for γ �= 1, 2 and keep all the other elements qαβ = q. The number of
such solutions is r(r − 1)/2. Similarly, one can switch the signs of 3, 4, . . . , r − 1 different
sets of qαβ . However, we can show that the solutions obtained by switching the signs of k
different sets are equivalent to those from picking r − k different sets for k = 1, 2, . . . , r − 1.
Therefore, the total number S(r) of the solutions with the Hamiltonian (45) is

S(r) =
[r/2]∑
k=0

rCk =


2r−1, r odd,

2r−1 +
r!

2 [(r/2)!]2 , r even,
(46)

where [x] denotes the largest integer less than or equal to x.
We need to include the Gaussian fluctuations around these saddles. The matrix of the

second derivatives has six distinct eigenvalues: a ‘breather’ mode with eigenvalue −τ which is
non-degenerate, one other negative eigenvalue, −τ/(r − 2) which is (n − r)-fold degenerate
and eigenvalues 2τ/(r −2), (r −1)-fold degenerate, rτ/(r −2), (r(r −3)/2)-fold degenerate,
(2r −3)τ/(r −2), (r −1)(n−r)-fold degenerate, and τ, (n−r)(n−r −1)/2-fold degenerate.
Setting τ = 1 for simplicity and collecting the contributions from the saddle points to Gaussian
order, we obtain

Z(I)(w2) = [1 + O(w2)] +
1

2

n∑
r=3

nCrS(r) exp

[
− r(r − 1)

12(r − 2)2w2

]
(−1)

1
2

(
r − 2

2

) r−1
2

×
(

r − 2

r

) r(r−3)

4

(−(r − 2))
n−r

2

(
r − 2

2r − 3

) (n−r)(r−1)

2 (
1
) (n−r)(n−r−1)

4 [1 + O(w2)],

(47)

where the first term corresponds to the usual perturbation expansion in w. The sum over r
starts at 3 since in equation (43) the index γ must differ from both α and β. The factor nCr

denotes the number of ways of introducing r non-zero blocks. Collecting the contributions
from the saddles in this way, instead of deforming a contour in a multi-dimensional complex
space, determines the partition function up to an overall factor. The analysis of the n = 3
case suggests that there is an overall factor of 1/2 coming from the fact that, for the nontrivial
saddles, only a half of the Gaussian integrals contribute compared to the perturbative one.
Indeed, for n = 3, one can explicitly check that the non-perturbative part of (47) reduces to
equation (42). The negative eigenvalues are responsible for the factor (−1)(n−r+1)/2, which
generates the imaginary part in Z.

For finite n, the saddles in the scheme I correspond to the partition function which is well
defined except for real w resulting in a branch cut on the positive w2 axis. The discontinuity
of the imaginary part across the cut is exponentially small ∼ exp(−n(n−1)/(12(n−2)2w2)).
(The imaginary part of (47) is dominated by the r = n term, since Hamiltonian (45) decreases
monotonically as r increases.) If the cubic spin glass field theory is well defined for real
coupling w, we expect that the cut moves to the negative w2 axis as we take the n → 0
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limit and that there is an exponentially small discontinuity across the negative w2 axis. The
migration of the cut as the analytic continuation of n → 0 is taken is exactly what happens in
the percolation problem [7]. In that case, the HamiltonianHs for the saddles depends explicitly
on n such that it changes sign as n → 0. In the present case, Hs in (45) is independent of
n, and there is no way of producing an exponentially small discontinuity across the negative
w2 axis from these saddles. Therefore, we conclude that the saddles in the scheme I are not
sufficient to describe the partition function in the n → 0 limit.

This observation leads us to consider another type of solution of equation (43), which we
call scheme II. It is inspired by the replica symmetry breaking scheme used by two of us [20]
to describe the free energy fluctuations. Instead of taking all qαβ nonzero for α, β = 1, 2 . . . r

as in the previous scheme, we set qαβ = q only when α and β belong to the m blocks of size
r/m on the diagonal of the r × r matrix as

qαβ =



q

q

. . .

q


.

︸ ︷︷ ︸
r

︸ ︷︷ ︸
n−r

(48)

The key point of the construction of these saddles is that we let m → ∞ before n → 0. For
finite m, this scheme is just a generalization of the scheme I which produces only subleading
terms. For m → ∞, however, the Hamiltonian becomes

Hs = m
(

r
m

)(
r
m

− 1
)
τ 3

12
(

r
m

− 2
)2

w2
→ − rτ 3

48w2
, (49)

which has the opposite sign to that in the scheme I. This can now describe the partition function
where the cut lies on the imaginary w axis. The solution to (43) is q = τ/(r/m − 2)w →
−τ/2w as m → ∞.

The matrix of the second derivatives necessary to include the Gaussian fluctuations around
the saddles, has two distinct positive eigenvalues, τ/2 and τ , which are, respectively, r(n− r)-
fold and (n − r)(n − r − 1)/2-fold degenerate. There exist a null eigenvalue, r(r − 3)/2-fold
degenerate, and one negative eigenvalue −τ, r-fold degenerate. This negative eigenvalue is
responsible for the factor (−τ)−

r
2 which generates the imaginary part for odd values of r. The

total number of solutions that can be obtained by switching the sign of qαβ is [S(r/m)]m → 2r/2

as m → ∞. (This limit exists if we assume r/m is even.) From (49), we can see that the
saddles with smallest r dominate for pure imaginary w. Therefore, the leading contribution to
the imaginary part of (50) should come from the first i.e. r = 1 term as we can see no reason
why it should be excluded in this kind of replica symmetry breaking scheme. Thus

Im Z(II)(w2) = ±
nC1

2
exp

[
τ 3

48w2

]
2

1
2

(
2

τ

) 1
2 (n−1) (1

τ

) 1
4 (n−1)(n−2)+ 1

2

[1 + O(w2)], (50)

where the upper and lower signs correspond to arg(w) = −π/2 and arg(w) = π/2,
respectively (see [7] for a discussion of the signs which arise in this type of calculation).

We take the n → 0 limit of (50) using the fact nCr = n(−1)r−1/r + O(n2), which can be
derived from 1/�(n− r + 1) = �(r −n) sin(π(r −n))/π . We finally obtain the discontinuity
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of the imaginary part of the partition function (2) in the limit n → 0 across the cut on the
imaginary w (w2 < 0) axis as

lim
n→0

Im
Z(II)(w2)

n
∼ ± exp

(
τ 3

48w2

)
. (51)

We cannot obtain the precise prefactor to the exponential term because we have neglected the
contributions of the massless eigenvalue. In principle, this soft mode could be integrated out
by identifying the underlying symmetries associated with the saddle point. This does not seem
obvious to us. However, its contribution is subdominant to that from the exponential and we
shall ignore its contribution.

The discontinuity in the imaginary part of the partition function can be used to extract
the coefficients AK of the perturbation expansion. To do that we write the above result in
terms of the expansion parameter g2. Recalling τ = 2t and g2 = w2/(τ/2)3, we can write
the right-hand side of equation (51) as ± exp(1/6g2) for arg(g2) = ∓π . This is the same
as equation (24) up to the undetermined prefactor. Therefore we obtain exactly the same
high-order behaviour as in (25)

lim
n→0

AK

n
∼ (−6)KK!. (52)

Without the spherical model mapping one would have had reservations about the likely
correctness of the replica procedure used.

6. High-order terms of the ε expansion

The starting point for obtaining the large order form of the ε expansion is the Hamiltonian of
equation (1) but without the quartic terms:

H = 1

4

∑
α,β

(∇qαβ)2 +
τ

4

∑
α,β

q2
αβ − w

6

∑
α,β,γ

qαβqβγ qγα. (53)

Our treatment closely follows that of McKane [7]. The saddle points which are the
analogue of equation (43) of the toy replica calculation are the instantons which satisfy the
equation

∇2qαβ = −τqαβ + w
∑

γ

qαγ qγβ. (54)

For evaluating the high-order coefficients in the ε expansion we can set τ = 0 and look for
a solution of the form qαβ = w−1dαβφc(r) in d = 6 dimensions. Such a solution, which
decouples replica indices from the spatial dependence r, exists if

dαβ =
∑

γ

dαγ dγβ, (55)

and

∇2φc(r) = φ2
c (r). (56)

There are spherically symmetric solutions of equation (56):

φc(r) = − 24λ2

[λ2r2 + 1]2
, (57)

where the parameter λ reflects the dilatation invariance of equation (56). We shall take for dαβ

the replica symmetry broken solution of scheme II. Then the energy of the instanton is

E =
∫

d6r

1

4

∑
α,β

(∇φc(r))
2 d2

αβ

/
w2 − w

6

∑
α,β,γ

dαβdβγ dγαφ3
c (r)

/
w3

. (58)
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Using the result that∫
d6r (∇φc(r))

2 = −
∫

d6r φ3
c (r) = 1152π3

5
, (59)

the energy of the instanton is

E =
(

1152π3

5

)
1

48w2
= 3

40g2
R

(60)

where g2
R = K6w

2 and K6 = S6/(2π)6 and S6 = π3 is the surface area of a six-dimensional
sphere of unit radius.

The leading terms in the large order behaviour of the ε expansion are obtained by replacing
g2

R by its fixed point value, which to lowest order is ε/2 [12] and by the usual saddle point
arguments the coefficient of εK for large K for any critical exponent goes like

∼K!

(
−20

3

)K

. (61)

The next most dominant term is a factor of the form Kb. The value of b depends on the
critical exponent being studied and is beyond the scope of this paper. To determine its value
a treatment is needed of the massless modes which arise in the Gaussian fluctuations around
the instanton solution.

Inspection of the first three terms in the ε expansion for η and ν−1 − 2 + η shows that
these terms are not growing anything like as rapidly as predicted at large K. It is perhaps not
surprising, therefore, that a Padé–Borel analysis of the series does not yield good numerical
values for the critical exponents in three dimensions.

7. Discussion

In summary we have studied the nature of the perturbation expansion of the zero-dimensional
cubic replica field theory of spin glasses. By mapping this to the problem of critical finite-size
corrections in a modified spherical spin glasses, we have determined the high-order behaviour
of the perturbation expansion coefficients. To the leading order, the coefficients alternate in
sign, but there is a subleading contribution where the terms in the perturbation series show
a cosine-like oscillation. In practice, the effects of these sub-dominant terms will be small,
making a simple Padé–Borel resummation of the series useful, as was found to be the case in
a similar situation for the disordered ferromagnet [4].

Non-perturbative terms are also present in spin glasses. These are Griffiths singularities
and arise from regions where the values of the couplings Jij produce a smaller amount of
frustration and hence a locally enhanced transition temperature. A discussion of their form
has been given in [21]. Similar singularities exist for disordered ferromagnets and it is widely
believed that their effects are very small. To our knowledge no quantitative discussion of these
singularities has been made for spin glasses and their study remains to be done. (The toy
problem, because it is zero dimensional, is free of Griffiths singularities).

The ε expansion for the critical exponents gives disappointing results as regards
applications to real spin glasses. This is not just due to the fact that ε = 3 in three dimensions
as in [11] good results were obtained for the exponents of the percolation problem in three
dimensions from an ε expansion with the same number of terms. We do not understand the
origin of this problem.

However, in our mind, the most significant remaining problem is what motivated this
entire study. Namely, does perturbation theory (i.e. the loop expansion) work well in the spin
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glass phase or does the existence of ‘droplets’ in finite-dimensional spin glasses indicate that
it fails completely? Our work does indicate though that perturbation theory is useful in the
high-temperature phase.
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[9] De Dominicis C, Kondor I and Temesvári T 1997 Spin Glasses and Random Fields ed A P Young (Singapore:

World Scientific)
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